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Abstract
Based on the method of collective variables, we develop the statistical field
theory for the study of a simple charge-asymmetric 1:z primitive model (SPM).
It is shown that the well-known approximations for the free energy, in particular
the DH limiting law (DHLL) and the optimized random phase approximation
(ORPA), can be obtained within the framework of this theory. In order to study
the gas–liquid critical point of the SPM we propose a method for the calculation
of chemical potential conjugate to the total number density which allows us to
take into account the higher-order fluctuation effects. As a result, the gas–liquid
phase diagrams are calculated for z = 2–4. The results demonstrate a qualitative
agreement with Monte Carlo (MC) simulation data: the critical temperature
decreases when z increases and the critical density increases rapidly with z.

1. Introduction

Besides being of fundamental interest, ionic systems including electrolyte solutions, molten
salts and ionic liquids deserve great attention from a practical point of view. For example,
new ionic liquids with very low vapour pressure may find applications in an environmentally
clean industry. Over the last ten years the phase and critical behaviour of ionic fluids has been
a subject of intense research. For reviews of experimental and theoretical situation see [1–7]
and the references cited therein. The basic properties of ionic systems can be described by the
primitive model (PM) consisting of a mixture of m species of charged hard spheres. A two-
component mixture of positive q0 and negative −zq0 charges having all the same diameter σ
is a SPM. In the case z = 1 we have the well-known restricted primitive model (RPM). Early
studies [8] established that the RPM has a gas–liquid (GL)-like critical point. A reasonable
theoretical description of the GL critical point of the RPM was accomplished at a mean-field
(MF) level using integral equation methods [4, 9] and Debye–Hückel (DH) theory [10]. Over
the last decade numerous simulation studies have been devoted to the location of the GL
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phase transition of this model [11–19], and the most reliable current estimations turn out to
be near T ∗

c = 0.049, ρ∗
c = 0.08 when the temperature T ∗ and the density ρ∗ are in standard

dimensionless units. Due to controversial experimental findings, the critical behaviour of the
RPM has also been under active debate [20–24] and strong evidence for an Ising universal class
has been found by recent simulations [19–26] and theoretical [6, 27–29] studies.

In spite of significant progress in this field, ionic systems are far from being completely
understood. The investigation of more complex models is very important in understanding the
nature of critical and phase behaviour of real ionic fluids which demonstrate both the charge
and size asymmetry as well as other complexities such as short-range attraction. The studies
of the effects of charge-asymmetry on the phase diagram have been recently started using
both computer simulations [18, 30, 31] and theoretical methods [32–35]. Monte Carlo (MC)
simulations show that the SPM exhibits a GL-like phase transition, specifically T ∗

c (z) decreases
with the increase of z while ρ∗

c (z) rapidly increases. Unfortunately, the results obtained within
the framework of both the original DH theory and the mean spherical approximation (MSA) are
independent of z. The results for the z-dependence of the critical temperature, obtained within
the framework of the field-theoretical analysis [32, 33], contradict the simulations displaying
the increase of temperature with z. On the other hand, the recent results found based on the
DH theory that have incorporated Bjerrrum ion pairs and their solvation in the residual ionic
fluid [34, 35] (theories DHBjCI and DHBjCIHC) demonstrate the decrease of T ∗

c with charge
asymmetry for z = 1–3 which agrees with MC data. This implies ‘. . . that recognizing ionic
association is inescapable for a successful theory’ [35].

The motivation for this paper is the above-mentioned contradictory results for the z-
dependence of the critical temperature. We study the GL phase diagrams of the charge
asymmetric 1:z PM by means of the theory that exploits the method of collective variables
(CVs) [36, 37] (see also [38, 39]). In particular, our aim is to answer the question: is the
theory, which does not include the effects of association explicitly in the Hamiltonian, capable
of correctly describing, at least on the qualitative level, the GL-like phase diagram of the SPM?
To this end, we develop a theoretical approach which is based on the functional representation
of configurational Boltzmann factor in terms of CVs. For a general case of a two-component
model which includes both the short- and long-range interactions we derive an exact expression
for the functional integral of the grand partition function (GPF). The CV action obtained
depends upon the two sets of CVs: {ρk} (and conjugate {ωk}) and {Qk} (and conjugate {γk})
describing the total number density and charge density fluctuations, respectively. We start with
the saddle point (or MF) solutions ρ̄ (and ω̄) and Q̄ (and γ̄ ), and then we expand the CV
action functionally around the MF solutions. As a result, we obtain an infinite expansion in
terms of CVs δρk and δQk (or δωk and δγk). For the SPM, based on the GPF in the Gaussian
approximation, we propose a method for the calculation of the chemical potential conjugate to
the total number density. The method allows us to take into account the higher-order fluctuation
effects and consists in solving the equations for chemical potentials by means of successive
approximations that correspond to the contributions of the higher-order correlations. Its initial
idea to some extent resembles the idea sketched out by Hubbard in [40].

It should be noted that the CVs were first introduced in the 1950s [38, 39] and then on their
basis the so-called CVs method was developed [36, 37]. Nearly at that time, other functional
approaches based on the Stratonovich–Hubbard transformation [40, 41] were originated. As
was shown recently [42], both groups of theories are in close relation.

The layout of the paper is as follows. In section 2, starting from the Hamiltonian of
an asymmetric two-component model with long- and short-range interactions, we derive the
exact functional representation of the GPF. We obtain an explicit expression for free energy of
SPM in the random phase approximation (RPA) that leads to the well-known results, i.e. the
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DH limiting law (DHLL) for the point charge particles and the free energy in the optimized
random phase approximation (ORPA) (or MSA) for the SPM. In section 3 we study the GL
critical point of the SPM, taking into account the correlation effects of higher order. The results
obtained demonstrate qualitative agreement with the MC simulation data for both the critical
temperature and the critical density. We conclude in section 4.

2. Functional representation of the grand partition function of a two-component ionic
model in the method of CVs

Let us consider a general case of a classical two-component system consisting of N particles
among which there exist N1 particles of species 1 and N2 particles of species 2. The pair
interaction potential is assumed to be of the following form:

Uαβ(r) = φHS
αβ (r)+ φC

αβ(r)+ φSR
αβ (r), (1)

where φHS
αβ (r) is the interaction potential between the two additive hard spheres of diameters

σαα and σββ . We call the two-component hard-sphere system a reference system (RS). The
thermodynamic and structural properties of the RS are assumed to be known. φC

αβ(r) is the
Coulomb potential: φC

αβ(r) = qαqβφC(r), where φC(r) = 1/(Dr), D is the dielectric constant;
hereafter we put D = 1. The solution is made of both positive and negative ions so that the
electroneutrality is satisfied,

∑2
α=1 qαcα = 0, and cα is the concentration of the species α,

cα = Nα/N . The ions of the species α = 1 are characterized by their hard-sphere diameter
σ11 and their electrostatic charge +q0 and those of species α = 2, characterized by diameter
σ22, bear opposite charge −zq0 (q0 is elementary charge and z is the parameter of charge
asymmetry). φSR

αβ (r) is the potential of the short-range interaction: φSR
αβ (r) = φR

αβ(r)+ φA
αβ(r),

where φR
αβ(r) is used to mimic the soft-core asymmetric repulsive interaction; φR

αβ(r) is
assumed to have a Fourier transform; φA

αβ(r) describes a van der Waals-like attraction.
We consider the grand partition function (GPF) of the system, which can be written as

follows:


[να] =
∑

N1�0

∑

N2�0

∏

α=1,2

exp(ναNα)

Nα !
∫

(d�) exp

[

−β
2

∑

αβ

∑

i j

Uαβ(ri j)

]

. (2)

Here the following notations are used: να is the dimensionless chemical potential, να =
βμα − 3 ln
, μα is the chemical potential of the α th species, β is the reciprocal temperature,

−1 = (2πmαβ

−1/h2)1/2 is the inverse de Broglie thermal wavelength; (d�) is the element of
configurational space of the particles.

Let us introduce operators ρ̂k and Q̂k,

ρ̂k =
∑

α

ρ̂k,α Q̂k =
∑

α

qαρ̂k,α,

which are combinations of the Fourier transforms of the microscopic number density of the
species α: ρ̂k,α = ∑

i exp(−ikrαi ). In this case a part of the Boltzmann factor in (2) which
does not include the RS interaction can be presented as follows:

exp

[

−β
2

∑

αβ

∑

i, j

(Uαβ(ri j)− φHS
αβ (ri j))

]

= exp

[

−1

2

∑

k

(�̃N N ρ̂kρ̂−k

+ �̃QQ Q̂k Q̂−k + 2�̃N Q ρ̂k Q̂−k)+ 1
2

∑

α

Nα
∑

k

(�̃SR
αα(k)+ q2

α�̃
C(k))

]

, (3)



10226 O Patsahan et al

where

�̃N N (k) = 1

(1 + z)2

[
z2�̃SR

11 (k)+ 2z�̃SR
12 (k)+ �̃SR

22 (k)
]

�̃QQ(k) = 1

(1 + z)2

[
�̃SR

11 (k)− 2�̃SR
12 (k)+ �̃SR

22 (k)
]

+ �̃C(k)

�̃N Q(k) = 1

(1 + z)2

[
z�̃SR

11 (k)+ (1 − z)�̃SR
12 (k)− �̃SR

22 (k)
]

(4)

and we use the notations �̃X ...
αβ (k) = β

V φ̃
X ...
αβ (k) with φ̃X ...

αβ (k) being a Fourier transform of the
corresponding interaction potential.

In order to introduce the collective variables (CVs) we use the identity

exp

[

− 1
2

∑

k

�̃η̂kη̂−k

]

=
∫

(dη)δF [η − η̂] exp

[

− 1
2

∑

k

�̃ηkη−k

]

, (5)

where δF [η − η̂] denotes the functional delta function

δF [η − η̂] ≡
∫

(dλ) exp

[

i
∑

k

λk(η − η̂k)

]

,

ηk = ηc
k − iηs

k (ηk = ρk, Qk) is the collective variable and

(dη) = dη0

∏

k �=0

dηc
kdηs

k, (dλ) = dλ0

∏

k �=0

dλc
kdλs

k.

The indices c and s denote real and imaginary parts of ηk (λk), respectively, and the product
over k is performed in the upper semi-space.

Taking into account (3)–(5), we can rewrite (2) as


[να] =
∫

(dρ)(dQ)(dω)(dγ ) exp (−H[να, ρ, Q, ω, γ ]) , (6)

where the CV action H is as follows:

H[να, ρ, Q, ω, γ ] = 1
2

∑

k

[�̃N N (k)ρkρ−k + �̃QQ(k)Qk Q−k + 2�̃N Q(k)

× ρk Q−k] − i
∑

k

(ωkρk + γk Qk)− ln
HS[ν̄α; −iω,−iqαγ ]. (7)

In (7) CVs ρk and Qk describe fluctuations of the total number density and charge density,
respectively. 
HS[ν̄α; −iω,−iqαγ ] is the GPF of a two-component system of hard spheres
with the renormalized chemical potential ν̄α in the presence of the local field ψα(ri ),


HS[· · ·] =
∑

N1�0

∑

N2�0

∏

α=1,2

exp(ν̄αNα)

Nα !
∫

(d�) exp

[

−β
2

∑

αβ

∑

i j

φHS
αβ (ri j )

−
∑

α

Nα∑

i

ψα(ri )

]

, (8)

where

ν̄α = να + 1

2

∑

k

�̃SR
αα(k)+

q2
α

2

∑

k

�̃C(k), (9)

ψα(ri ) = iω(ri )+ iqαγ (ri ). (10)

Mean-field approximation. The MF approximation of functional (6) is defined by


MF[να] = exp(−H[να, ρ̄, Q̄, ω̄, γ̄ ]), (11)



Gas–liquid critical point in ionic fluids 10227

where ρ̄, Q̄, ω̄ and γ̄ are the solutions of the saddle point equations:

ρ̄ = 〈N[ν̄α; −iω̄,−iqαγ̄ ]〉HS, Q̄ = 0,

ω̄ = −iρ̄φ̃N N (0), γ̄ = −iρ̄φ̃N Q(0).
(12)

Substituting (12) in (11) we obtain


MF[να] = exp
[β

2
ρ̄2φ̃N N (0)

]

HS[ν̄α; −iω̄,−iqαγ̄ ].

The Legendre transform of ln
MF gives the free energy in the MF approximation,

β fMF = βFMF

V
= β fHS(ρα)− β

2V

∑

α

ρα
∑

k

φ̃SR
αα (k)

− β

2V

∑

α

q2
αρα

∑

k

φ̃C(k)+ β

2
ρ2φ̃N N (0). (13)

It is worth noting that for φSR
αβ (r) = 0 we arrive at the free energy of the SPM in a zero-loop

approximation [43].
Beyond the MF approximation. First we present CVs ρk and Qk (ωk and γk) as

ρk = ρ̄δk + δρk, Qk = Q̄δk + δQk,

ωk = ω̄δk + δωk, γk = γ̄ δk + δγk,

where the quantities with a bar are given by (12) and δk is the Kronecker symbol.
Then we write ln
HS[ν̄α; −iω,−iqαγ ] (see (8)–(10)) in the form of the cumulant

expansion

ln
HS[· · ·] =
∑

n�0

(−i)n

n!
∑

in�0

∑

k1,...,kn

M(in)
n (k1, . . . , kn)δγk1 . . . δγkin

× δωkin+1
. . . δωknδk1+···+kn , (14)

where M(in)
n (k1, . . . , kn) is the nth cumulant defined by

M(in)
n (k1, . . . , kn) = ∂n ln
HS[. . .]

∂δγk1 . . . ∂δγkin
∂δωkin+1

. . . ∂δωkn

|δγk=0,δωk=0. (15)

The expressions for the cumulants (for in � 3) are given in appendix A.
We can integrate (6) over δωk and δγk and obtain for 
[να] (see [29])


[να] = 
MF[ν̄α]
′
∫

(dδρ)(dδQ) exp

{

− 1

2!
∑

k

[
L N N (ν̄α; k)δρkδρ−k

+ 2L N Q(ν̄α; k)δρkδQ−k + L QQ(ν̄α; k)δQkδQ−k
]

+
∑

n�3

∑

in�0

H(in)
n (ν̄α; δρ, δQ)

}

. (16)

It is worth noting that the above expression is of the same form as that obtained within the
framework of the mesoscopic field theory [6, 27]. The main difference is that 
[να] in (16) is
a function of full chemical potentials, rather than just a function of their mean field parts.

2.1. Gaussian approximation. A two-component primitive model (PM)

In the Gaussian approximation, which corresponds to taking into account in (16) only terms
with n � 2 (H(in)

n ≡ 0), we have L AB(ν̄α; k) = CAB(ν̄α; k) (A, B = N, Q), where

CN N = �̃N N (k)+ 1/M(0)
2 (ν̄α; k), CQQ = �̃QQ(k)+ 1/M(2)

2 (ν̄α),

CN Q = �̃N Q(k).
(17)
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CN N (k), CQQ(k) and CN Q(k) are the Fourier transforms of the density–density, charge–charge
and charge–density direct correlation functions, respectively. It is worth noting that M(2)

2 (ν̄α)

does not depend on k (see appendix A). After integrating in (16) over δρk and δQk taking into
account (17) we arrive at the GPF in the Gaussian approximation.

Let us consider a two-component simple primitive model (SPM) [43] consisting of charged
hard spheres of the same diameter (σ11 = σ22 = σ ) with �̃SR

αβ (k) = 0 which differ by their
respective charges (z �= 1). We have for the SPM (see (4))

�̃N N (k) = 0, �̃N Q(k) = 0, �̃QQ(k) = �̃C(k). (18)

It should be noted here that the Hamiltonian of the SPM, as for the RPM [29], does not
include a direct pair interaction of number density fluctuations. Integration over δρk and δωk

in (6) is trivial in this case and leads to the KSSHE action obtained in [43] by performing
the Hubbard–Stratonovich transformation. Starting from this expression the free energy of the
SPM in a two-loop order approximation was derived by Caillol [43]. As was shown [33], the
z-dependence of the critical temperature calculated within the framework of this approximation
disagrees with the results obtained by MC simulations. Below we propose an alternate way of
taking into account the fluctuation effects near the GL critical point.

Expressions (17), under conditions (18), are reduced to

CN N = 1/M(0)
2 (ν̄α; k), CQQ = �̃C(k)+ 1/M(2)

2 (ν̄α), CN Q ≡ 0 (19)

and the logarithm of the GPF in the Gaussian approximation is as follows:

ln
G(να) = ln
HS(ν̄α)− 1
2

∑

k

ln
[
1 + �̃C(k)M(2)

2 (ν̄α)
]
. (20)

After the Legendre transform of ln
G(να) we obtain the well-known expression (see e.g. [43])
for the free energy in the RPA,

β fRPA = β fMF + 1

2V

∑

k

ln(1 + κ2
Dφ

C(k)), (21)

where β fMF has the form (13) under conditions (18), and κ2
D = 4πρβq2

0 z is the squared Debye
number. It is worth noting that the use of a momentum cutoff |k
| = 2π/a in (21) leads to
the same expression for the β fDH as in [32]. For point charge particles, (21) yields the free

energy in the DHLL approximation β fDHLL = β fid − κ3
D

12π . Using the optimized regularization
of the Coulomb potential inside the hard core [47], we arrive at the free energy in the ORPA
(or MSA).

As is seen, β fRPA does not explicitly depend on the charge asymmetry factor z. The same
is true for the MSA and the DH theories. The detailed analysis of the GL phase equilibrium
using (21) and different regularizations of the Coulomb potential inside the hard core was
fulfilled in [33]. As was shown [32, 43], the z-dependent free energy can be found only in
the higher-order approximations.

Below we study the GL phase diagram of SPMs when fluctuation effects of order higher
than the two are taken into account.

3. Gas–liquid critical point of the primitive models (PMs) of ionic fluids

Let us consider equation (20). Introducing ν̄N and ν̄Q

ν̄N = z

1 + z
ν̄1 + 1

1 + z
ν̄2, ν̄Q = 1

q0(1 + z)
(ν̄1 − ν̄2) (22)
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we can present (20) as follows:

ln
G(να) = ln
HS(ν̄N , ν̄Q)− 1
2

∑

k

ln
[
1 + �̃C(k)M(2)

2 (ν̄N , ν̄Q)
]
, (23)

where the new chemical potentials ν̄N and ν̄Q (see (22)) are conjugate to the total number
density and charge density, respectively. Since near the GL critical point the fluctuations of the
number density play a crucial role, ν̄N is of special interest in this study.

We present ν̄N and ν̄Q as

ν̄N = ν0
N + λ�νN , ν̄Q = ν0

Q + λ�νQ,

with ν0
N and ν0

Q being the MF values of ν̄N and ν̄Q , respectively and �νN and �νQ being the
solutions of the equations

∂ ln
G(νN , νQ)

∂�νN
= λ〈N〉HS, (24)

∂ ln
G(νN , νQ)

∂�νQ
= 0. (25)

Expanding (23) in powers of �νN and �νQ , we obtain

ln
G(νN , νQ) =
∑

n�0

n∑

in�0

Cin
n

M(in)
n (ν0

N , ν
0
Q)

n! �ν
in
Q�ν

n−in
N , (26)

where

M(in)
n (ν0

N , ν
0
Q) = ∂n ln
G(νN , νQ)

∂�ν
in
Q∂�ν

n−in
N

|�νN =0,�νQ=0 .

The expressions for the coefficients M(in)
n are given in appendix B.

We solve equations (24) and (25) approximately, taking into account (26) and keeping
terms of a certain order in parameter λ. The procedure is as follows. First, we calculate �νQ

from (25) in the approximation which corresponds to a certain order of λ e.g., order s. Then, we
substitute this�νQ into equation (24) in order to find�νN in the approximation corresponding
to λs+1. In (24) we take into account only the linear terms with respect to �νN , keeping terms
with all powers of �νQ within a given approximation in terms of λ.

As is readily seen, the first nontrivial solution for �νN is obtained in the approximation of
the first order of λ. It is the result of substitution in (24) of the solution �νQ = 0. As a result,
we have

�νN = − M(2)
3

2M
(0)
2

∑

k

g̃(k), (27)

where

g̃(k) = − �̃C(k)

1 + �̃C(k)M(2)
2

= − 1

V

βφ̃C(k)

1 + κ2
Dφ̃

C(k)
. (28)

Equations (27) and (28) can be rewritten as (see appendix C)

�νN = 1

2N

∑

k

κ2
Dφ̃

C(k)

1 + κ2
Dφ̃

C(k)
(29)

which corresponds to the RPA. As was mentioned above,�νN given by (29) does not depend on
the charge asymmetry factor z. In order to obtain the z-dependent expression for the chemical
potential related to the number density fluctuations we should consider the next approximation
in λ for �νN .
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In order to obtain�νN in the approximation corresponding to λ2, we substitute in (24) the
solution�νQ as follows (see appendix C):

�νQ = − M
(3)
3

2M
(2)
2

∑

k

g̃(k) = − (1 − z)

2

∑

k

q0g̃(k), (30)

which is found from (25) in the first approximation of λ. Taking into account only a linear term
with respect to �νN , we get

�νN = − 1

M
(0)
2

[
1

2

∑

k

g̃(k)M(2)
3 + 1

2

∑

k

g̃(k)M(3)
4 �νQ + 1

2
M

(2)
3 �ν2

Q + 1

3!M
(3)
4 �ν

3
Q

]

.

(31)

Let us consider (31) in detail. The correlation effects of order higher than two enter the equation
through the cumulants M(in)

n for n � 3 and in �= 0. The appearance of these cumulants reflects
the fact that the terms proportional to ωγ 2, γ 3 and ωγ 3 are taking into account in the cumulant
expansion (14) (n � 4). Recall that ωk and γk are conjugate to the CVs ρk and Qk describing
the total number density and charge density fluctuations, respectively. This means that in order
to determine �νN we take into account in (14), besides the terms of the second order, the
contribution corresponding to the pure charge density fluctuations for n = 3 (M(3)

3 ) and the
contributions corresponding to the correlations between the charge density and the total number
density fluctuations for n � 4 (M(2)

3 and M
(3)
4 ) which are linear in ωk. Therefore, the analysis

of (31) establishes a link between the approximations considered above (in terms of λ) and the
approximations formulated in terms of CVs.

Another important issue to be discussed is the limiting case z = 1 that corresponds to the
RPM. For z = 1 only the first term survives in (31). Furthermore, in this case the conditions
M(3)

n ≡ 0 and�νQ = 0 hold simultaneously (they are equivalent for the RPM) due to the model
symmetry (see formulae in appendixes A and C). As a result, we arrive at the expression for
the chemical potential of the RPM in the RPA [33, 48]. On the other hand, when we set solely
�νQ = 0 in (31) we obtain (27) which also corresponds to the RPA and is valid for z �= 1.
The latter reflects the fact that the correlations between fluctuations of the charge density and
the total number density are not taken into account at the RPA level. Therefore, for �νQ = 0
all the terms, except the first one, in (31) become equal to zero and we get the expressions for
the chemical potential conjugate to the total number density in the same approximation for the
both models. The equation (31) is obtained in the approximation when only the linear terms
with respect to ω in the cumulant expansion (14) are taken into account. However, for z = 1
these contributions are equal to zero. This means that the approximation considered in this
paper for the SPM does not have an analogy for the RPM. In order to include the fluctuations
in the simplest model (RPM) the higher-order terms should be taken into account. This issue
was considered in [48] where a good agreement for the critical temperature was obtained.

Based on (31) the coexistence curves for the SPM for different values of z can be
calculated. It is worth noting that the regularization of the potential φC

αβ(r) inside the hard core
is arbitrary to some extent. For example, different regularizations for the Coulomb potential
were considered in [6, 33]. Within the framework of the Gaussian approximation of the GPF the
best estimation for the critical temperature is achieved for the optimized regularization [47] that
leads to the ORPA (MSA). However, this approximation does not work properly in the higher
orders of the perturbation theory [33]. In this study we use the Weeks–Chandler–Andersen
(WCA) regularization [45]. As was shown [46], this choice of φC(r) for r < σ produces rapid
convergence of the series of the perturbation theory for the free energy. For the WCA, the
Fourier transform of φC(r) is of the form φC(x) = sin(x)/x3 with x = kσ . As a result, (31)
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Figure 1. Coexistence curves of the (1:z) charge-asymmetric ionic model.

can be written as (see appendix C)

�νN = i1

π

[

1 + i1(1 − z)2

2zπ

(

1 − i1(1 − z)2

3zπ

)]

. (32)

In (32)

i1 = 1

T ∗

∫ ∞

0

x2 sin xdx

x3 + κ∗2 sin x
(33)

with κ∗ = κDσ being the reduced Debye number. Hereafter the standard notations are
introduced for the temperature and the density: T ∗ = kBT σ

zq2
0

, ρ∗ = ρσ 3.

Finally, we get the expression for the full chemical potential νN conjugate to the total
number density,

νN − 3 ln
/σ = lnρ∗ + η(8 − 9η + 3η3)

(1 − η)3
+ z

1 + z
ln z − ln(1 + z)− 1

2T ∗ +�νN , (34)

where �νN is given in (32) and (33) and η = πρ∗/6. In (34) the Carnahan–Starling
approximation for the hard-sphere system is used.

Figure 1 shows the coexistence curves for z = 2–4 calculated based on the isotherms of
chemical potential (34) supplemented with the Maxwell construction. The estimations for the
critical point are as follows:

z = 2: T ∗
c = 0.123 10, ρ∗

c = 0.009 46

z = 3: T ∗
c = 0.113 13, ρ∗

c = 0.027 40

z = 4: T ∗
c = 0.100 30, ρ∗

c = 0.045 01.

These results demonstrate the qualitative agreement with the MC data: the critical
temperature decreases when z increases and the critical density increases rapidly with z.
Moreover, a comparison of the coexistence curve forms for z = 2 and z = 3 (results for
the coexistence curve for z = 4 are not available by now) with the DHBjCIHC theory indicates
their similarity. It is also worth noting that the above data for the critical temperature lie about
in the same region as those obtained in [33] within the framework of the two-loop expansion.
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4. Conclusions

In this paper we have studied the GL phase behaviour of a charge-asymmetric primitive ionic
model. For this purpose we have derived the exact expression for the functional of the GPF
of a two-component asymmetric ionic model which includes both the short- and long-range
interactions among charged hard spheres. We have shown that the well-known approximations
for the free energy, in particular DHLL and ORPA, can be reproduced within the framework
of this approach. On the other hand, the GPF functional can be reduced to the form found in
the KSSHE theory [43]. This means that the field-theoretical analysis of the expression for the
GPF given by (6) and (7) has to lead in the two-loop approximation to the same z-dependence
for the critical temperatures as in [33], which does not agree with the MC simulations. Here,
we have proposed an alternative method for the study of the GL phase equilibria in the SPM.
It consists in the calculation of the chemical potential νN conjugate to the total number density
by means of successive approximations.

We have obtained the expression for the chemical potential νN in which the effects of
indirect correlations between the number density fluctuations are taken into consideration via
a charge subsystem. This fact is reflected in expression (31) which includes the higher-order
cumulants (cumulants M(2)

3 , M(3)
3 and M(3)

4 ). The cumulants in turn are related to the higher-
order truncated correlation functions of a hard-sphere system (see appendix A). In particular,
this is the main distinctive feature of the method proposed in comparison with the field-
theoretical analysis of Netz and Orland [32]. In [32], the system of charged point particles
is considered and hard-core effects are taken into account only by an effective high-momentum
cutoff. In addition, the perturbative consideration used in [32] is solely based on the charge
density fluctuations. Within the framework of the approach proposed both the charge density
and number density fluctuations are taken into consideration simultaneously and the equations
for the relevant chemical potentials are solved self-consistently.

In conclusion, based on the expression for νN supplemented with the Maxwell construction
the coexistence curves for z = 2–4 have been calculated. The z-dependences obtained for both
the critical temperature and the critical density qualitatively agree with MC simulations. The
results demonstrate that the terms responsible for the charged clustering need not be included
in the Hamiltonian explicitly in order to describe, at least qualitatively, the GL phase diagram
of the SPM. Instead, the interaction between charge and density fluctuations should be properly
taken into account. To achieve a quantitative agreement, the higher-order terms should be taken
into consideration in the CV action. This task will be considered elsewhere.
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Appendix A. Recurrence formulae for the cumulants in the Fourier space representation

M(0)
n (k1, k2, . . . , kn) = G̃n(k1, k2, . . . , kn) (A.1)

M(1)
n (k1, k2, . . . , kn) = 0 (A.2)

M(2)
n (k1, k2, . . . , kn) =

∑

α

q2
αcαG̃n−1(k1, k2, . . . , |kn−1 + kn|) (A.3)

M(3)
n (k1, k2, . . . , kn) =

∑

α

q3
αcαG̃n−2(k1, k2, . . . , |kn−2 + kn−1 + kn|) (A.4)
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where G̃n(k1, k2, . . . , kn) is the Fourier transform of the n-particle truncated correlation
function [44] of a one-component hard-sphere system.

Appendix B. Explicit expressions for M(in)
n

M(0)
1 = λM

(0)
1 + λ3

2
M

(2)
3

∑

k

g̃(k),

M(1)
1 = λ3

2
M(3)

3

∑

k

g̃(k),

M(0)
2 = λ2M

(0)
2 + λ4

2
M

(2)
4

∑

k

g̃(k)+ λ6

2

[
M

(2)
3

]2 ∑

k

g̃2(k),

M(1)
2 = λ4

2
M(3)

4

∑

k

g̃(k)+ λ6

2
M(2)

3 M(3)
3

∑

k

g̃2(k),

M(2)
2 = λ2M

(2)
2 + λ4

2
M

(4)
4

∑

k

g̃(k)+ λ6

2

[
M

(3)
3

]2 ∑

k

g̃2(k),

M(0)
3 = λ3M

(0)
3 + λ5

2
M

(2)
5

∑

k

g̃(k)+ 3λ7

2
M

(2)
3 M

(2)
4

∑

k

g̃2(k)+ λ9
[
M

(2)
3

]3 ∑

k

g̃3(k),

M(1)
3 = λ5

2
M

(2)
5

∑

k

g̃(k)+ λ7

2

[
M

(3)
3 M

(2)
4 + M

(2)
3 M

(3)
4

] ∑

k

g̃2(k)

+ λ9
[
M

(2)
3

]2
M

(3)
3

∑

k

g̃3(k),

M(2)
3 = λ3M

(2)
3 + λ5

2
M

(4)
5

∑

k

g̃(k)+ λ7

2

[
M

(2)
3 M

(4)
4 + 2M

(3)
3 M

(3)
4

]

×
∑

k

g̃2(k)+ λ9
[
M(3)

3

]2
M(2)

3

∑

k

g̃3(k),

M(3)
3 = λ3M

(3)
3 + λ5

2
M

(5)
5

∑

k

g̃(k)+ 3λ7

2
M

(3)
3 M

(4)
4

∑

k

g̃2(k)+ λ9
[
M

(3)
3

]3 ∑

k

g̃3(k),

M(0)
4 = λ4M

(0)
4 + λ6

2
M

(2)
6

∑

k

g̃(k)+ λ8

2

(
3
[
M

(2)
4

]2 + 4M
(2)
3 M

(2)
5

)

×
∑

k

g̃2(k)+ 6λ10
[
M(2)

3

]2
M(2)

4

∑

k

g̃3(k)+ 3λ12
[
M(2)

3

]4 ∑

k

g̃4(k),

M(1)
4 = λ6

2
M

(3)
6

∑

k

g̃(k)+ λ8

2

(
3M

(2)
4 M

(4)
4 + M

(2)
3 M

(3)
5 + M

(3)
3 M

(2)
5

)

×
∑

k

g̃2(k)+ 3λ10
(
M

(2)
3 M

(3)
3 M

(4)
4 +

[
M

(2)
3

]2
M

(3)
4

)∑

k

g̃3(k)

+ 3λ12
[
M

(2)
3

]3
M

(3)
3

∑

k

g̃4(k),

M(2)
4 = λ4M(2)

4 + λ6

2
M(4)

6

∑

k

g̃(k)+ λ8

2

(
2M(3)

3 M(3)
5 + 2M(2)

3 M(3)
5
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+ M
(2)
4 M

(4)
4 + 2

[
M

(3)
4

]2 + 2M
(2)
4

[
M

(3)
3

]2)∑

k

g̃2(k)+ 2λ10

×
(

2M
(2)
3 M

(3)
3 M

(3)
4 +

[
M

(2)
3

]2
M

(4)
4

)∑

k

g̃3(k)+ 3λ12
[
M

(2)
3

]2

×
[
M(3)

3

]2 ∑

k

g̃4(k),

M(3)
4 = λ4M

(2)
4 + λ6

2
M

(5)
6

∑

k

g̃(k)+ λ8

2

(
3M

(3)
3 M

(4)
5 + M

(2)
3 M

(5)
5

+ 3M
(3)
4 M

(4)
4

)∑

k

g̃2(k)+ 3λ10
(
M

(2)
3 M

(3)
3 M

(4)
4 +

[
M

(3)
3

]2
M

(3)
4

)

×
∑

k

g̃3(k)+ 3λ12M(2)
3 [M(3)

3 ]3
∑

k

g̃4(k).

In the above formulae M(in)
n = M(in)

n (ν0
N , ν

0
Q).

Appendix C. Some explicit relations obtained for a 1:z asymmetric PM

Let us consider the expressions (A.1)–(A.4). For a 1:z asymmetric PM we have
∑

α

q2
αcα = q2

0 z,
∑

α

q3
αcα = q3

0 z(1 − z).

Using the above relations and (A.1)–(A.4) we can obtain the following explicit relations for the
SPM:

M(2)
3

M
(0)
2

= q2
0 z,

(
M(3)

3

M
(2)
2

)2

= q2
0 z
(1 − z)2

z
,

M(3)
4 M(3)

3

M
(2)
2 M

(2)
3

= q2
0 z
(1 − z)2

z
,

(
M

(3)
3

M
(2)
2

)3
M

(3)
4

M
(2)
3

=
(

q2
0 z
(1 − z)2

z

)2

.
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